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The entropy of a confined polymer: I 
S. F. EDWARDS and K. F. FREED? 
Department of Theoretical Physics, University of Manchester 
MS.  received 7th .November 1968 

Abstract. A study is made of the entropy of a random-flight polymer confined in a 
box of volume V. It  is shown that when the natural radius of the polymer approaches 
the linear size of the box, the entropy ceases to have the normal form of a thermo- 
dynamic function and the pressure is not a function of the density but takes the form 

p v  = (E) K T  
3 R2 

where L is the polymer length, 1 the step length and R equals V,  and the density of the 
system even though strictly in equilibrium is not uniform. I t  is shown how the 
introduction of constraints due to forces, cross linkages and very long-lived quasi- 
invariants restores the equation of state to a thermodynamic form P = P(p) where 
p = L/Vl. 

1. Introduction 
A polymer consisting of 1%’ units, each of length 1 and (for the sake of simplicity) 

assumed to be freely hinged, represents a system whose properties are intermediate be- 
tween a system with a full 31V degrees of freedom and a system of just 3. In  particular, 
consider a polymer in a box of volume V. If the polymer is very much smaller than the 
box it will behave as a single molecule with internal degrees of freedom. Thus its free 
energy will depend upon volume just as in the usual gas case 

F 
- = In V +  terms independent of V .  KT 

Since the molecule has a random-flight structure its mean linear dimension will be given by 
the Einstein value (N12)112, so the condition for equation (1.1) is 

( N z 2 ) 3 : 2  < v. (1.2) 
This will normally be satisfied in, say, a polymer solution by an enormous factor. But now 
suppose the polymer reaches a size (NZ2)3i2 - V. This of course cannot happen for a 
macroscopic box and a single molecule, but is of interest because a large molecule can be 
boxed in, in a semi-permanent environment in a solid or dense liquid, and also, in either a 
dense system or a cross-linked system, it would appear physically that the fact that the 
system is not made of a single polymer should not matter too much. Thus, if a giant 
molecule fills a box densely, and then a number n of cuts are made in it, so that N B n 9 1, 
it would appear that physically, since N 9 n, there should not be a dramatic change in the 
free energy. A third reason for looking at the box-filling molecule is on purely theoretical 
grounds. One normally discusses systems in which the free energy is extensive, i.e. 
F ac Vf(p), p being the density. I t  turns out that this is not the case here and since this 
property of F is considered fundamental it is of interest to see what has happened. 

A numerical assessment of the results is given in the following paper by Collins and 
Wragg (1969). 

2. The single very long chain 
Let us then consider a single very long chain confined to a box in thermal equilibrium. 
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The entropy is purely due to configurations and 

s =  K I n n  (2.1) 
where SZ is the total number of configurations. Since the whole problem will depend on 
long-range behaviour it will be accurate (to order 1,”) to consider the probability distribu- 
tion of the links in the approximation in which it satisfies a diffusion equation. The number 
of configurations of a chain which starts at r’ and ends at r is given by 

R ( L )  = r 

G(r, r’;  L )  =A‘“ s R ( o ) . r ,  exp (- ; s R2 ds) (2.2) 

where the integration is taken over all paths (R/s) commencing at r’, ending at r ,  and lying 
within the box ( L  = NI). The normalization Jr/. represents the number of configurations 
of a completely unconfined chain, since this is a constant and permits the use of the Wiener 
integral. In  terms of unconfined integration 

3 R ( L ) = r  

G = N I  e x p ( - 2 1 / R 2 d s ) n O ( R ) S R  

@ = l  R i n V  

R ( 0 )  = r‘ 
where 

S 

= 0 otherwise. 

(2.3) 

(2.4) 

I n  the same spirit that allows a chain of links to be replaced by the Wiener integral, 
we can replace Z In 0 by an integral, to give 

and 

!2 = 1 d3r d3r‘ G(r,  r ’ ;  L ) .  (2.5) 

Let us consider 0 as ‘softened’ when R nears the boundaries to make In 0 a less severely 
behaved function, and take the limit at the end. Now In 0 is a ‘potential’ and it is well 
known that G must satisfy 

a 1  
(8s 6 
-+- V 2 + I n @ ( R )  G = S ( r - r f ) 8 ( s - - s ’ )  

(s’ here:is the origin of s). (2 -6)  
Now In 0 simply represents an infinite potential wall and the problem amounts to solving 

(g+f V2) G = 8(r-r’)6(s-s’)  (2.7) 

where G is to be constructed from eigenfunctions which vanish at and outside the walls of 
the box. Thus 

n n x  n xx’  n2xY %TY’ n 3 m  3 0 0  CO m 2 2 c sin (-+-I sin (+-) sin (y) sin (“1 sin (’1 G =  (:) 
1 1 1  

n TZ’ 1 n 2  

6 R2 
x sin (+) exp { - - - (n12 + n22 + n , 2 ) ~  

where R3 = V ,  Thus, relative to a free chain, 
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Two limiting cases are L N 0, i.e. L < R and L 2 R. In  the first, the sum can be replaced 
by an integral and 

In V+constants = In L2 
in the second, only n, = n2 = n3 = 1 is significant and 

(2.10) 

I T 2  

2 R2 
1nQ = - --L-ln V+constants. 

Since in the present problem F = - T S ,  one has, for LE < R2, 

whilst for L1 % R2 

F =  - KT In V+constants 
PV =.KT 

F = K T  - - - ~ T l n v  (3 I 

(2.11) 

(2.12) 
(2.13) 

(2.14) 

(2.15) 

the single K T  being a negligible addition to the main term. Thus the pressure is like that of 
a perfect gas of 

m = .." (2) molecules 
3 R3 

where 

(2.16) 

This result seems at first sight very reasonable. The molecule moves around the box as a 
unit, until the box is of the order of its free size, and the pressure thereupon increases as the 
box gets smaller. However, it must be noticed that the probability distribution of the ends 
and indeed of any intermediate points tends to a sin2(nx/R) sin2(vy/R) sin2(m/R) distribu- 
tion as L becomes very large and is not the uniform distribution which one usually expects. 
This, however, is to be expected once one bases the calculation on summing all possible 
states with equal weight. Since any chain reaching the boundary will have a finite probabi- 
lity of crossing it, the only way to forbid crossing is that the density reach zero at the walls. 
R e  notice the difference between this case and the trajectory of a random-flight particle. 
As time goes by a random flight will fill the box with uniform density because whenever 
the flight reaches the wall it is reflected. This problem has a G made of the cosines rather 
than sines. The thermodynamic problem can only be considered as an ensemble of random 
flights by deleting all those flights which reach the wall. A consequence of the non- 
uniformity is that the free energy does not satisfy the condition F = Vf(p), i.e. 

natural mean volume of polymer molecule 
volume of gas 

m3!2 

L12 
F = Vf (7). (2.17) 

This situation is perfectly satisfactory for a single molecule trapped in some interstitial 
position, but it is clear that a normal polymerized material does have uniform density and its 
free energy will satisfy (2.17). As remarked in the introduction there seems a paradox here, 
since for very long strands of material, or cross-linked material in which the cross links are 
permitted to move or alternatively to be created so slowly that they leave the system in a 
condition of thermal equilibrium, it should not matter greatly if the system is treated as one 
vast molecule. This is considered further in the next section. 

3. Real systems 
T o  discuss the behaviour of a macroscopic polymerized system, the mode of approach 

given by Edwards (1967) mill be followed. Suppose one did have a very long polymer which 
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would on average be highly entangled with itself. Let us suppose that this polymer were 
made by fusing the ends of a large number of sub-polymers which were each small compared 
with the box and so took up uniform density. Then the presence of all the entanglements 
would preclude the system from taking up the non-uniform density of (2.8) except on an 
enormously long time scale, and we can stop it altogether by closing the molecule into one 
very long highly entangled loop. Suppose there is some specification C describing the (per- 
manent) entanglements so that if Qc is the number of configurations permitted under C 
and p ,  the probability of C occurring 

S = K 2 p ,  In Q, - K 2 p ,  Inp, 
C C 

where the second term in S is the ‘entropy of formation of the ensemble’ and is of constant 
value in any subsequent history, so can be disregarded. Thus 

F =  - KT 2 p ,  In Q, + constant. 

N o w  suppose the volume changes. The probability p c  is laid down initially and does not 
change, so that 

- =  aF - ~ T x p ~ ( - - - ) .  1 80, 

aV c Qc av (3.3) 

If the system had all states equally weighted (as in normal statistical mechanics when the 
constraints were ‘frozen’ by closing the polymer or by some degree of cross linking, then 

QC .pc = - ccs2cr 
so that for infinitesimal changes of volume 

NOW 

2 Qct = Q 
C‘ 

the total number of configurations, hence 

(3.4) 

(3.6) 

(3 .7 )  

Thus for the purpose of calculating the pressure for an infinitesimal deformation from 
creation, one may use 

where Q is the total number of states permitted under the conditions in which the system 
was created. This will not be true for an arbitrarily created system in which (3.4) is not 
strictly satisfied. 

At this point consider a fragment of the chain. Let us suppose that the motion of a piece 
of this chain will be influenced by its immediate surroundings but not by far distant parts of 
the system. Suppose at any one time its configuration is W(s). Then subsequently its 
surroundings will confine R(s) to be near W(s). Suppose this confinement is rather weak and 
assume it is due to a series of segments labelledj. Then the number of states of R(s) will be 

S =  KInQ (3 -9) 

k2(s) ds n n C , { R ( s )  - W(s)). 
e x P G !  i j 

(3.10) 
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Now one may write l-Ijl-IsC5 as 
exp c c In c, (3.11) 

5 s  

and it seems possible that C will be analytic and can be expanded in terms of (R(s) - W(s)I2 
and that only the first term need be kept. The  coefficient, since all t h e j  segments will be- 
have equally and (under weak conditions) independently, will be proportional to the 
density, so one has 

exp{ -pC/  ds{R(s) - W ( S ) } ~  (3.12) 

where C is a constant and p = N/V = L,'L'l. There is no harm in considering the number 
of configurations available to R(s) and 3 ( s )  though this counts the free chains twice, for 
these only add constants of the type taken out b y N  in 5 2. The chains may now be taken as 
free since the effect of the box is in effect wholely contained in the constraint. (A more 
elaborate argument is given by Edwards (1967).) Then one may look at G(r ,  r'; 'c, d ;  L )  
which satisfies the differential equation 

One may change variables to r + n  and r - & ,  and discard the former, leaving 
CO 

G = JV 2 He,(r - a)  He,(r' - a ' )  exp( - w,L) 
n = O  

where He, is the nth Hermite polynomial and 

Therefore, in the limit of large L, the n = 0 term dominates and 
112 

s = - K (i) L(pl)1/2 + K In Y 
and 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

This law now does satisfy the usual thermodynamic structure. It is of course based on the 
approximation (3.12), but it is clear that if more elaborate calculations were performed that 
any kind of argument like that preceding (3.12) will always lead to a thermodynamic 
formula since it supposes that the thermodynamic situation exists. For example, it could be 
held that under dense conditions that the 'potential well' between R and W must have a 
range such that the mean separation of R - W  = q, say, will be such that q2L N V. 
That argument would lead to 

PV ~ ~ ~ ( 2 3 ~ )  (3.19) 
again in the correct form. 

It should perhaps be also remarked that the forces present between non-adjacent links 
will tend to counteract the non-uniform distribution of 5 2, even when the conditions of 5 2 
are fully obeyed. 
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4. Conclusion 
This paradox between the results of $ 2  and $ 3  depends on time scales. Given an 

enormously long polymer, if one waits long enough it will settle down to the distribution of 
5 2. But this, because of knots and entanglements, will take an unimaginably long time and 
in practice, if at some initial time the polymer has a uniform mean density, it will keep this 
effectively for ever. In this state a single very long molecule is a reasonable model for an 
entangled system of shorter molecules, or a cross-linked system which is in effect a single 
multiply branched molecule. But for physically reasonably sized molecules, the work of $ 2  is 
significant if they find themselves in a (microscopic) volume which inhibits them from the 
free configurations, provided they are sufficiently small in size so that they can take up all 
configurations in a sufficiently small time, and of course set it in an environment which is 
stable over this period of time. Thus, though the work of $ 2  is mainly of theoretical 
interest, it may have applications in certain special conditions. 
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